Гулькевичский район, пос. Кубань Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 22 имени Героя Советского Союза Г. Г. Шумейко пос. Кубань муниципального образования Гулькевичский район

СОГЛАСОВАНО

Заместитель директора по

УВР

Сай И.В.

Протокол №1

от «29» августа 2023 г

УТВЕРЖДЕНО

Пиректор МБОУ СОШ

Nº 22y cou

№ 22 им. Гора Советского или

Прядкина С.А.

Тротокол №1

«30» августа 2023 г.

РАБОЧАЯ ПРОГРАММА

По химии

Уровень образования (класс) основное общее образование (8-9 классы)

Количество часов 136

Учитель Чаленко Ольга Рамильевна

Программа разработана на основе примерной рабочей программы. 8-9 классы, авторы О.С.Габриелян, С. А. Сладков, М.: Просвещение, 2021 г., примерной программы по химии

Планируемые результаты освоения учебного предмета

Основные понятия химии (уровень атомно-молекулярных представлений)

Выпускник научится:

- описывать свойства твёрдых, жидких, газообразных веществ, выделяя их существенные признаки;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», используя знаковую систему химии;
- изображать состав простейших веществ с помощью химических формул и сущность химических реакций с помощью химических уравнений;
- вычислять относительную молекулярную и молярную массы веществ, а также массовую долю химического элемента в соединениях для оценки их практической значимости;
 - сравнивать по составу оксиды, основания, кислоты, соли;
 - классифицировать оксиды и основания по свойствам, кислоты и соли по составу;
- описывать состав, свойства и значение (в природе и практической деятельности человека) простых веществ кислорода и водорода;
- давать сравнительную характеристику химических элементов и важнейших соединений естественных семейств щелочных металлов и галогенов;
 - пользоваться лабораторным оборудованием и химической посудой;
- проводить несложные химические опыты и наблюдения за изменениями свойств веществ в процессе их превращений; соблюдать правила техники безопасности при проведении наблюдений и опытов;
- различать экспериментально кислоты и щёлочи, пользуясь индикаторами; осознавать необходимость соблюдения мер безопасности при обращении с кислотами и щелочами.

Выпускник получит возможность научиться:

- грамотно обращаться с веществами в повседневной жизни;
- осознавать необходимость соблюдения правил экологически безопасного поведения в окружающей природной среде;
- понимать смысл и необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.;
- использовать приобретённые ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания веществ;
- развивать коммуникативную компетентность, используя средства устной и письменной коммуникации при работе с текстами учебника и дополнительной литературой, справочными таблицами, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;
- объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ.

Периодический закон и периодическая система химических элементов Д.И.Менделеева. Строение вещества

Выпускник научится:

- классифицировать химические элементы на металлы, неметаллы, элементы, оксиды и гидроксиды которых амфотерных, и инертные элементы (газы) для осознания важности упорядоченности научных знаний;
 - раскрывать смысл периодического закона Д. И. Менделеева;
- описывать и характеризовать табличную форму периодической системы химических элементов;
- характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы, а также калия и кальция;
- различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую;
- изображать электронно-ионные формулы веществ, образованных химическими связями разного вида;
- выявлять зависимость свойств веществ от строения их кристаллических решёток: ионных, атомных, молекулярных, металлических;
- характеризовать химические элементы и их соединения на основе положения элементов в периодической системе и особенностей строения их атомов;
- описывать основные этапы открытия Д. И. Менделеевым периодического закона и периодической системы химических элементов, жизнь и многообразную научную деятельность учёного;
- характеризовать научное и мировоззренческое значение периодического закона и периодической системы химических элементов Д. И. Менделеева;
- осознавать научные открытия как результат длительных наблюдений, опытов, научной полемики, преодоления трудностей и сомнений.

Выпускник получит возможность научиться:

- осознавать значение теоретических знаний для практической деятельности человека;
- описывать изученные объекты как системы, применяя логику системного анализа;
- применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;
- развивать информационную компетентность посредством углубления знаний об истории становления химической науки, её основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники.

Многообразие химических реакций

Выпускник научится:

- объяснять суть химических процессов и их принципиальное отличие от физических;
 - называть признаки и условия протекания химических реакций;

- устанавливать принадлежность химической реакции к определённому типу по одному из классификационных признаков: 1) по числу и составу исходных веществ и продуктов реакции (реакции соединения, разложения, замещения и обмена); 2) по выделению или поглощению теплоты (реакции экзотермические и эндотермические); 3) по изменению степеней окисления химических элементов (реакции окислительновосстановительные); 4) по обратимости процесса (реакции обратимые и необратимые);
 - называть факторы, влияющие на скорость химических реакций;
 - называть факторы, влияющие на смещение химического равновесия;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей; полные и сокращённые ионные уравнения реакций обмена; уравнения окислительновосстановительных реакций;
- прогнозировать продукты химических реакций по формулам/названиям исходных веществ; определять исходные вещества по формулам/названиям продуктов реакции;
- составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции;
 - приготовлять растворы с определённой массовой долей растворённого вещества;
- определять характер среды водных растворов кислот и щелочей по изменению окраски индикаторов;
- проводить качественные реакции, подтверждающие наличие в водных растворах веществ отдельных катионов и анионов.

Выпускник получит возможность научиться:

- составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям;
- приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ;
- прогнозировать результаты воздействия различных факторов на изменение скорости химической реакции;
- прогнозировать результаты воздействия различных факторов на смещение химического равновесия.

Многообразие веществ

Выпускник научится:

- определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли;
 - составлять формулы веществ по их названиям;
 - определять валентность и степень окисления элементов в веществах;
- составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- объяснять закономерности изменения физических и химических свойств простых веществ (металлов и неметаллов) и их высших оксидов, образованных элементами второго и третьего периодов;

- называть общие химические свойства, характерные для групп оксидов: кислотных, основных, амфотерных;
- называть общие химические свойства, характерные для каждого из классов неорганических веществ: кислот оснований солей;
- приводить примеры реакций, подтверждающих химические свойства неорганических веществ: оксидов, кислот, оснований и солей;
- определять вещество-окислитель и вещество-восстановитель в окислительно-восстановительных реакциях;
- составлять окислительно-восстановительный баланс (для изученных реакций) по предложенным схемам реакций;
- проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ;
- проводить лабораторные опыты по получению и собиранию газообразных веществ: водорода, кислорода, углекислого газа, аммиака; составлять уравнения соответствующих реакций.

Выпускник получит возможность научиться:

- прогнозировать химические свойства веществ на основе их состава и строения;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
- выявлять существование генетической взаимосвязи между веществами в ряду: простое вещество оксид гидроксид соль;
- характеризовать особые свойства концентрированных серной и азотной кислот;
- приводить примеры уравнений реакций, лежащих в основе промышленных способов получения аммиака, серной кислоты, чугуна и стали;
- описывать физические и химические процессы, являющиеся частью круговорота веществ в природе;
- организовывать, проводить ученические проекты по исследованию свойств веществ, имеющих важное практическое значение.

Содержание учебного предмета

8 КЛАСС

Начальные понятия и законы химии

Тела и вещества. Свойства веществ. Эталонные физические свойства веществ. Материалы и материаловедение. Роль химии в жизни современного общества. Отношение общества к химии: хемофилия и хемофобия.

Методы изучения химии. Наблюдение. Эксперимент Моделирование. Модели материальные и знаковые или символьные.

Газы. Жидкости. Твёрдые вещества. Взаимные переходы между агрегатными состояниями вещества: возгонка (сублимация) и десублимация, конденсация и испарение, кристаллизация и плавление.

Физические явления. Чистые вещества и смеси. Гомогенные и гетерогенные смеси. Смеси газообразные, жидкие и твёрдые. Способы разделения смесей:

перегонка, или дистилляция, отстаивание, фильтрование, кристаллизация или выпаривание. Хроматография. Применение этих способов в лабораторной практике, на производстве и в быту.

Химические элементы. Атомы и молекулы. Простые и сложные вещества. Аллотропия на примере кислорода. Основные положения атомно-молекулярного учения. Ионы. Вещества молекулярного и немолекулярного строения.

Знаки (символы) химических элементов. Информация, которую несут знаки химических элементов. Этимология названий некоторых химических элементов. Периодическая таблица химических элементов Д. И. Менделеева: короткопериодный и длиннопериодный варианты. Периоды и группы. Главная и побочная подгруппы, или А- и Б-группы. Относительная атомная масса.

Химические формулы. Индексы и коэффициенты. Относительная молекулярная масса. Массовая доля химического элемента в соединении. Информация, которую несут химические формулы.

Валентность. Структурные формулы. Химические элементы с постоянной и переменной валентностью. Вывод формулы соединения по валентности. Определение валентности химического элемента по формуле вещества. Составление названий соединений, состоящих из двух химических элементов, по валентности. Закон постоянства состава веществ.

Химические реакции. Реагенты и продукты реакции. Признаки химических реакций. Условия их протекания и прекращения. Реакции горения. Экзотермические и эндотермические реакции.

Закон сохранения массы веществ. Химические уравнения. Составление химических уравнений. Информация, которую несёт химическое уравнение.

Классификация химических реакций по составу и числу реагентов и продуктов. Типы химических реакций. Реакции соединения, разложения, замещения и обмена. Катализаторы и катализ.

- Коллекция материалов и изделий из них.
- Модели, используемые на уроках физики, биологии и географии.
- Объёмные и шаростержневые модели некоторых химических веществ.
- Модели кристаллических решёток.
- Собирание прибора для получения газа и проверка его герметичности.
- Возгонка сухого льда, иода или нафталина.
- Агрегатные состояния воды.
- Разделение двух несмешивающихся жидкостей с помощью делительной воронки.
- Дистиллятор и его работа.
- Установка для фильтрования и её работа.
- Установка для выпаривания и её работа.
- Коллекция бытовых приборов для фильтрования воздуха.
- Разделение красящего вещества фломастера с помощью метода бумажной хроматографии.

- Модели аллотропных модификаций углерода и серы.
- Получение озона.
- Портреты Й. Я. Берцелиуса и Д. И. Менделеева.
- Короткопериодный и длиннопериодный варианты периодической системы Д. И. Менделеева.
- Конструирование шаростержневых моделей молекул.
- Аппарат Киппа.
- Разложение бихромата аммония.
- Горение серы и магниевой ленты.
- Портреты М. В. Ломоносова и А. Л. Лавуазье.
- Опыты, иллюстрирующие закон сохранения массы веществ.
- Горение фосфора, растворение продукта горения в воде и исследование полученного раствора лакмусом.
- Взаимодействие соляной кислоты с цинком.
- Получение гидроксида меди(II) и его разложение при нагревании.

- Ознакомление с коллекцией лабораторной посуды.
- Проверка герметичности прибора для получения газов.
- Ознакомление с минералами, образующими гранит.
- Приготовление гетерогенной смеси порошков серы с железом и их разделение.
- Взаимодействие растворов хлоридов и иодидов калия с раствором нитрата серебра.
 - Получение гидроксида меди(II) и его взаимодействие с серной кислотой.
 - Взаимодействие раствора соды с кислотой.
- Проверка закона сохранения массы веществ на примере взаимодействия щёлочи с кислотой.
- Проверка закона сохранения массы веществ на примере взаимодействия щёлочи с солью железа(III).
- Разложение пероксида водорода с помощью оксида марганца (IV). 11. Замещение железом меди в медном купоросе.

Практические работы

- 1. Правила техники безопасности и некоторые виды работ в химической лаборатории (кабинете химии).
 - 2. Наблюдение за горящей свечой.
 - 3. Анализ почвы (аналог работы «Очистка поваренной соли»).

Важнейшие представители неорганических веществ. Количественные отношения в химии

Состав воздуха. Понятие об объёмной доле (ϕ) компонента природной газовой смеси — воздуха. Расчёт объёма компонента газовой смеси по его объёмной доле и наоборот.

Кислород. Озон. Получение кислорода. Собирание и распознавание кислорода. Химические свойства кислорода: взаимодействие с металлами, неметаллами и сложными веществами. Применение кислорода. Круговорот кислорода в природе.

Оксиды. Образование названий оксидов по их формулам. Составление формул оксидов по их названиям. Представители оксидов: вода и углекислый газ, негашёная известь.

Водород в природе. Физические и химические свойства водорода, его получение и применение.

Кислоты, их состав и их классификация. Индикаторы. Таблица растворимости. Серная и соляная кислоты, их свойства и применение.

Соли, их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат натрия, фосфат кальция.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Кратные единицы измерения количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества.

Расчёты с использованием понятий «количество вещества», «молярная масса», «постоянная Авогадро».

Закон Авогадро. Молярный объём газообразных веществ. Относительная плотность газа по другому газу.

Кратные единицы измерения — миллимолярный и киломолярный объемы газообразных веществ.

Расчёты с использованием понятий «количество вещества», «молярная масса», «молярный объём газов», «число Авогадро».

Гидросфера. Круговорот воды в природе. Физические и химические свойства воды: взаимодействие с оксидами.

Основания, их состав. Растворимость оснований в воде. Изменение окраски индикаторов в щелочной среде. Представители щелочей: гидроксиды натрия, калия и кальция.

Растворитель и растворённое вещество. Растворы. Растворение. Гидраты. Массовая доля растворённого вещества. Расчёты, связанные с использованием понятия «массовая доля растворённого вещества».

- Определение содержания кислорода в воздухе.
- Получение кислорода разложением перманганата калия и пероксида водорода.
- Собирание методом вытеснения воздуха и воды.
- Распознавание кислорода.
- Горение магния, железа, угля, серы и фосфора в кислороде.
- Коллекция оксидов.
- Получение, собирание и распознавание водорода.
- Горение водорода.

- Взаимодействие водорода с оксидом меди(II).
- Коллекция минеральных кислот.
- Правило разбавления серой кислоты.
- Коллекция солей.
- Таблица растворимости кислот, оснований и солей в воде.
- Некоторые металлы, неметаллы и соединения с количеством вещества, равным 1 моль.
- Модель молярного объёма газообразных веществ.
- Коллекция оснований.

- Помутнение известковой воды при пропускании углекислого газа.
- Получение водорода взаимодействием цинка с соляной кислотой.
- Распознавание кислот с помощью индикаторов.
- Изменение окраски индикаторов в щелочной среде.
- Ознакомление с препаратами домашней или школьной аптечки: растворами пероксида водорода, спиртовой настойки иода, аммиака.

Практические работы

- 4. Получение, собирание и распознавание кислорода.
- 5. Получение, собирание и распознавание водорода.
- 6. Приготовление раствора с заданной массовой долей растворённого вещества.

Основные классы неорганических соединений

Обобщение сведений об оксидах, их классификации, названиях и свойствах. Способы получения оксидов

Основания, их классификация, названия и свойства. Взаимодействие с кислотами, кислотными оксидами и солями. Разложение нерастворимых оснований. Способы получения оснований.

Кислоты, их классификация и названия. Общие химические свойства кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с основаниями — реакция нейтрализации. Взаимодействие кислот с солями. Получение бескислородных и кислородсодержащих кислот.

Соли, их классификация и свойства. Взаимодействие солей с металлами, особенности этих реакций. Взаимодействие солей с солями.

Генетические ряды металла и неметалла. Генетическая связь между классами неорганических веществ.

Лабораторные опыты

- Взаимодействие оксида кальция с водой.
- Помутнение известковой воды.
- Реакция нейтрализации.

- Получение гидроксида меди(II) и его взаимодействие с кислотой.
- Разложение гидроксида меди(II) при нагревании.
- Взаимодействие кислот с металлами.
- Взаимодействие кислот с солями.
- Ознакомление с коллекцией солей.
- Взаимодействие сульфата меди(II) с железом.
- Взаимодействие солей с солями.
- Генетическая связь между классами неорганических веществ на примере соединений меди.

Практические работы

7. Решение экспериментальных задач по теме «Основные классы неорганических соединений».

Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение атома

Естественные семейства химических элементов: щелочные и щелочноземельные металлы, галогены, инертные (благородные) газы. Амфотерность. Амфотерные оксиды и гидроксиды. Комплексные соли.

Открытие Д. И. Менделеевым периодического закона и создание им периодической системы химических элементов.

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны, нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Микромир. Электроны. Строение электронных уровней атомов химических элементов 1—20. Понятие о завершённом электронном уровне.

Изотопы. Физический смысл символики Периодической системы. Современная формулировка периодического закона. Изменения свойств элементов в периодах и группах как функция строения электронных оболочек атомов.

Характеристика элемента-металла и элемента-неметалла по их положению в периодической системе химических элементов Д. И. Менделеева.

Демонстрации

- Различные формы таблиц периодической системы.
- Моделирование построения периодической системы Д. И. Менделеева.
- Модели атомов химических элементов.
- Модели атомов элементов 1—3-го периодов.

Лабораторные опыты

• Получение амфотерного гидроксида и исследование его свойств.

Химическая связь. Окислительно-восстановительные реакции

Ионная химическая связь. Ионы, образованные атомами металлов и неметаллов. Схемы образования ионной связи для бинарных соединений. Ионные кристаллические решётки и физические свойства веществ с этим типом решёток. Понятие о формульной единице вещества.

Ковалентная химическая связь. Электронные и структурные формулы. Понятие о валентности. Ковалентная неполярная связь. Схемы образования ковалентной связи для бинарных соединений. Молекулярные и атомные кристаллические решётки и свойства веществ с этим типом решёток.

Электроотрицательность. Ряд электроотрицательности. Ковалентная полярная химическая связь. Диполь. Схемы образования ковалентной полярной связи для бинарных соединений. Молекулярные и атомные кристаллические решётки и свойства веществ с этим типом решёток.

Металлическая химическая связь и металлическая кристаллическая решётка. Свойства веществ с этим типом решёток. Единая природа химических связей.

Степень окисления. Сравнение степени окисления и валентности. Правила расчёта степеней окисления по формулам химических соединений.

Окислительно-восстановительные реакции. Определение степеней окисления для элементов, образующих вещества разных классов. Реакции ионного обмена и окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Демонстрации

- Видеофрагменты и слайды «Ионная химическая связь».
- Коллекция веществ с ионной химической связью.
- Модели ионных кристаллических решёток.
- Видеофрагменты и слайды «Ковалентная химическая связь».
- Коллекция веществ молекулярного и атомного строения.
- Модели молекулярных и атомных кристаллических решёток.
- Видеофрагменты и слайды «Металлическая химическая связь».
- Коллекция «Металлы и сплавы».
- Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II).
- Горение магния.
- Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты

• Изготовление модели, иллюстрирующей свойства металлической связи

9 КЛАСС

Повторение и обобщение сведений по курсу 8 класса

Бинарные соединения. Оксиды солеобразующие и несолеобразующие. Гидроксиды: основания, амфотерные гидроксиды, кислородсодержащие кислоты. Средние, кислые, основные и комплексные соли. Обобщение сведений о химических реакциях. Классификация химических реакций по различным признакам: составу и числу реагирующих и образующихся веществ, тепловому эффекту, обратимости, изменению степеней окисления элементов, образующих реагирующие вещества, агрегатному состоянию реагирующих веществ, использованию катализатора.

Понятие о скорости химической реакции. Факторы, влияющие на скорость химических реакций: природа реагирующих веществ, их концентрация, температура, площадь соприкосновения, наличие катализатора. Катализ.

Демонстрации

- Ознакомление с коллекциями металлов и неметаллов.
- Ознакомление с коллекциями оксидов, кислот и солей.
- Зависимость скорости химической реакции от природы реагирующих веществ.
- Зависимость скорости химической реакции от концентрации реагирующих вешеств.
- Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ («кипящий слой»).
- Зависимость скорости химической реакции от температуры реагирующих вешеств.

Лабораторные опыты

- Взаимодействие аммиака и хлороводорода.
- Реакция нейтрализации.
- Наблюдение теплового эффекта реакции нейтрализации.
- Взаимодействие серной кислоты с оксидом меди(II).
- Разложение пероксида водорода с помощью каталазы картофеля.
- Зависимость скорости химической реакции от природы реагирующих веществ на примере взаимодействия растворов тиосульфата натрия и хлорида бария, тиосульфата натрия и соляной кислоты.
- Зависимость скорости химической реакции от природы металлов при их взаимодействии с соляной кислотой.
- Зависимость скорости химической реакции от природы кислот при их взаимодействии с железом.
 - Зависимость скорости химической реакции от температуры.
 - Зависимость скорости химической реакции от концентрации.
- Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ.
 - Зависимость скорости химической реакции от катализатора.

Химические реакции в растворах электролитов

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциаций электролитов с различным характером связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Классификация ионов и их свойства. Кислоты, основания и соли как электролиты. Их классификация и диссоциация.

Общие химические свойства кислот: изменение окраски индикаторов, взаимодействие с металлами, оксидами и гидроксидами металлов и солями. Молекулярные и ионные (полные и сокращённые) уравнения реакций. Химический смысл сокращённых уравнений. Условия протекания реакций между электролитами до конца. Ряд активности металлов.

Общие химические свойства щелочей: взаимодействие с кислотами, оксидами неметаллов, солями. Общие химические свойства нерастворимых оснований: взаимодействие с кислотами, разложение при нагревании.

Общие химические свойства средних солей: взаимодействие с кислотами, щелочами, солями и металлами. Взаимодействие кислых солей со щелочами.

Гидролиз как обменное взаимодействие солей с водой. Гидролиз соли сильного основания и слабой кислоты. Гидролиз соли слабого основания и сильной кислоты. Водородный показатель (pH).

Свойства кислот, оснований, оксидов и солей в свете теории электролитической диссоциации и представлений об окислительно-восстановительных реакциях.

Демонстрации

- Испытание веществ и их растворов на электропроводность.
- Зависимость электропроводности уксусной кислоты от концентрации.
- Движение окрашенных ионов в электрическом поле.
- Определение характера среды в растворах солей.

Лабораторные опыты

- Диссоциация слабых электролитов на примере уксусной кислоты.
- Изменение окраски индикаторов в кислотной среде.
- Реакция нейтрализации раствора щёлочи различными кислотами.
- Получение гидроксида меди(II) и его взаимодействие с различными кислотами.
- Взаимодействие сильных кислот с оксидом меди(II).
- Взаимолействие кислот с металлами.
- Качественная реакция на карбонат-ион.
- Получение студня кремниевой кислоты.
- Качественная реакция на хлорид- или сульфат-ионы.
- Изменение окраски индикаторов в щелочной среде.
- Взаимодействие щелочей с углекислым газом.
- Качественная реакция на катион аммония.

- Получение гидроксида меди(II) и его разложение.
- Взаимодействие карбонатов с кислотами.
- Получение гидроксида железа(III).
- Взаимодействие железа с раствором сульфата меди(II).

Практические работы

1. Решение экспериментальных задач по теме «Электролитическая диссоциация».

Неметаллы и их соединения

Строение атомов неметаллов и их положение в периодической системе. Ряд электроотрицательности. Кристаллические решётки неметаллов — простых веществ. Физические свойства неметаллов. Общие химические свойства неметаллов: окислительные и восстановительные.

Галогены, строение их атомов и молекул. Физические и химические свойства галогенов. Закономерности изменения свойств галогенов в зависимости от их положения в периодической системе. Нахождение галогенов в природе и их получение. Биологическое значение и применение галогенов.

Галогеноводороды и соответствующие им кислоты: плавиковая, соляная, бромоводородная, иодоводородная. Галогениды. Качественные реакции на галогенидионы. Применение соединений галогенов.

Общая характеристика элементов VIA-группы. Сера в природе и её получение. Аллотропные модификации серы и их свойства. Химические свойства серы и её применение.

Сероводород: строение молекулы, физические и химические свойства, получение и значение. Сероводородная кислота. Сульфиды и их значение. Люминофоры.

Оксид серы(IV), сернистая кислота, сульфиты. Качественная реакция на сульфит-ион.

Оксид серы(VI), серная кислота, сульфаты. Кристаллогидраты.

Серная кислота как сильный электролит. Свойства разбавленной серной кислоты как типичной кислоты: взаимодействие с металлами, основными и амфотерными оксидами, основаниями и амфотерными гидроксидами, солями. Качественная реакция на сульфат-ион.

Общая характеристика элементов VA-группы. Азот, строение его атома и молекулы. Физические и химические свойства и применение азота. Азот в природе и его биологическая роль.

Аммиак, строение молекулы и физические свойства. Аммиачная вода, нашатырный спирт, гидрат аммиака. Донорно-акцепторный механизм образования связи в катионе аммония. Восстановительные свойства аммиака. Соли аммония и их применение. Качественная реакция на катион аммония.

Оксиды азота: несолеобразующие и кислотные. Азотистая кислота и нитриты. Азотная кислота, её получение и свойства. Нитраты.

Фосфор, строение атома и аллотропия. Фосфиды. Фосфин. Оксид фосфора(V) и фосфорная (ортофосфорная) кислота. Фосфаты.

Общая характеристика элементов IVA-группы: особенности строения атомов, простых веществ и соединений в зависимости от положения элементов в периодической системе. Углерод. Аллотропные модификации: алмаз, графит. Аморфный углерод: сажа, активированный уголь. Адсорбция. Химические свойства углерода. Коксохимическое производство и его продукция. Карбиды.

Оксид углерода(II): строение молекулы, получение и свойства. Оксид углерода(IV): строение молекулы, получение и свойства. Угольная кислота. Соли угольной кислоты: карбонаты и гидрокарбонаты. Техническая и пищевая сода.

Органическая химия. Углеводороды.

Метан, этан и пропан как предельные (насыщенные) углеводороды. Этилен и ацетилен как непредельные (ненасыщенные) углеводороды. Структурные формулы веществ. Горение углеводородов. Реакции дегидрирования предельных углеводородов.

Спирты. Этиловый спирт, его получение, применение и физиологическое действие. Трёхатомный спирт глицерин. Уксусная кислота как представитель карбоновых кислот.

Кремний: строение атома и нахождение в природе. Силициды и силан. Свойства кремния. Оксид кремния(IV). Кремниевая кислота и её соли.

Производство стекла и цемента. Продукция силикатной промышленности: оптическое волокно, керамика, фарфор, фаянс. Оптическое волокно.

Неметаллы в природе. Фракционная перегонка жидкого воздуха как способ получения кислорода, азота и аргона. Получение фосфора, кремния, хлора, иода. Электролиз растворов.

Получение серной кислоты: сырьё, химизм, технологическая схема, метод кипящего слоя, принципы теплообмена, противотока и циркуляции. Олеум. Производство аммиака: сырьё, химизм, технологическая схема.

- Коллекция неметаллов.
- Модели кристаллических решёток неметаллов: атомные и молекулярные.
- Озонатор и принципы его работы.
- Горение неметаллов простых веществ: серы, фосфора, древесного угля.
- Образцы галогенов простых веществ.
- Взаимодействие галогенов с металлами.
- Вытеснение хлора бромом или иода из растворов их солей.
- Коллекция природных соединений хлора.
- Взаимодействие серы с металлами.
- Горение серы в кислороде.
- Коллекция сульфидных руд.
- Качественная реакция на сульфид-ион.
- Обесцвечивание окрашенных тканей сернистым газом.
- Взаимодействие концентрированной серной кислоты с медью.
- Обугливание органических веществ концентрированной серной кислотой.
- Диаграмма «Состав воздуха».
- Видеофрагменты и слайды «Птичьи базары».

- Получение, собирание и распознавание аммиака.
- Разложение бихромата аммония.
- Взаимодействие концентрированной азотной кислоты с медью.
- Горение чёрного пороха.
- Разложение нитрата калия и горение в нём древесного уголька.
- Образцы природных соединений фосфора.
- Горение фосфора на воздухе и в кислороде.
- Получение белого фосфора и испытание его свойств.
- Коллекция «Образцы природных соединений углерода».
- Портрет Н. Д. Зелинского. Поглощение растворённых веществ или газов активированным углём.
- Устройство противогаза.
- Модели молекул метана, этана, этилена и ацетилена.
- Взаимодействие этилена с бромной водой и раствором перманганата калия.
- Общие химические свойства кислот на примере уксусной кислоты.
- Качественная реакция на многоатомные спирты.
- Коллекция «Образцы природных соединений кремния».
- Коллекция стекла, керамики, цемента и изделий из них.
- Коллекция продукции силикатной промышленности.
- Видеофрагменты и слайды «Производство стекла и цемента».
- Коллекция «Природные соединения неметаллов».
- Видеофрагменты и слайды «Фракционная перегонка жидкого воздуха».
- Видеофрагменты и слайды «Получение водорода, кислорода и галогенов электролитическим способом».
- Модели аппаратов для производства серной кислоты.
- Модель кипящего слоя.
- Модель колонны синтеза аммиака.
- Видеофрагменты и слайды «Производство серной кислоты».
- Видеофрагменты и слайды «Производство аммиака».
- Коллекция «Сырьё для получения серной кислоты».

- Распознавание галогенид-ионов.
- Качественные реакции на сульфат-ионы.
- Качественная реакция на катион аммония.
- Химические свойства азотной кислоты, как электролита.
- Качественные реакции на фосфат-ион.
- Получение и свойства угольной кислоты.
- Качественная реакция на карбонат-ион.
- Пропускание углекислого газа через раствор силиката натрия.

Практические работы

- 2. Изучение свойств соляной кислоты.
- 3. Изучение свойств серной кислоты.
- 4. Получение аммиака и изучение его свойств.
- 5. Получение углекислого газа. Качественная реакция на карбонат-ионы.

Металлы и их соединения

Положение металлов в периодической системе химических элементов Д. И. Менделеева, строение атомов и кристаллов металлов. Металлическая связь и металлическая кристаллическая решётка. Физические свойства металлов: электро- и теплопроводность, отражающая способность, пластичность. Чёрные и цветные металлы.

Металлы как восстановители. Электрохимический ряд напряжений. Взаимодействие металлов с неметаллами, оксидами, кислотами, солями. Алюминотермия.

Общая характеристика элементов IA-группы. Оксиды и гидроксиды щелочных металлов, их получение, свойства, применение. Важнейшие соли щелочных металлов, их значение в природе и жизни человека.

Общая характеристика элементов IIA-группы. Оксиды и гидроксиды щелочноземельных металлов, их получение, свойства и применение. Важнейшие соли щелочноземельных металлов, их значение в природе и жизни человека. Карбонаты и гидрокарбонаты кальция.

Временная и постоянная жёсткость воды. Способы устранения временной жёсткости. Способы устранения постоянной жёсткости.

Соединения алюминия в природе. Химические свойства алюминия. Особенности оксида и гидроксида алюминия как амфотерных соединений. Важнейшие соли алюминия (хлорид, сульфат).

Особенности строения атома железа. Железо в природе. Важнейшие руды железа. Получение чугуна и стали. Оксиды и гидроксиды железа(II) и (III). Соли железа(II) и (III). Обнаружение катионов железа в растворе. Значение соединений железа.

Коррозия газовая (химическая) и электрохимическая. Защита металлов от коррозии. Металлы в природе. Понятие о металлургии. Чёрная и цветная металлургия. Пирометаллургия, гидрометаллургия, электрометаллургия. Доменный процесс. Переработка чугуна в сталь. Электролиз расплавов.

- Взаимодействие натрия, лития и кальция с водой.
- Горение натрия, магния и железа в кислороде.
- Вспышка термитной смеси.
- Взаимодействие смеси порошков серы и железа, цинка и серы.
- Взаимодействие алюминия с кислотами, щелочами и водой.
- Взаимодействие железа и меди с хлором.
- Взаимодействие меди с концентрированной серной кислотой и азотной кислотой (разбавленной и концентрированной).

- Окраска пламени соединениями щелочных металлов.
- Окраска пламени соединениями щелочноземельных металлов.
- Гашение извести водой.
- Получение жёсткой воды взаимодействием углекислого газа с известковой водой.
- Устранение временной жёсткости кипячением и добавлением соды.
- Устранение постоянной жёсткости добавлением соды.
- Иониты и принцип их действия (видеофрагмент).
- Коллекция природных соединений алюминия.
- Видеофрагменты и слайды «Оксид алюминия и его модификации».
- Получение амфотерного гидроксида алюминия и исследование его свойств.
- Коллекция «Химические источники тока».
- Результаты длительного эксперимента по изучению коррозии стальных изделий в зависимости от условий процессов.
- Восстановление меди из оксида меди(II) водородом.
- Видеофрагменты и слайды «Производство чугуна и стали».
- Видеофрагменты и слайды «Изделия из чугуна и стали».
- Видеофрагменты и слайды «Производство алюминия».

- Взаимодействие железа с раствором сульфата меди(II).
- Получение известковой воды и опыты с ней.
- Получение гидроксидов железа(II) и (III).
- Качественные реакции на катионы железа.

Практические работы

- 6. Жёсткость воды и способы её устранения.
- 7. Решение экспериментальных задач по теме «Металлы».

Химия и окружающая среда

Строение Земли: ядро, мантия, земная кора, литосфера, гидросфера, атмосфера. Химический состав Земли. Горные породы. Минералы. Руды. Осадочные горные породы. Полезные ископаемые.

Источники химического загрязнения окружающей среды. Глобальные экологические проблемы человечества: нарушение биогеохимических круговоротов химических элементов, потепление климата, кислотные дожди и др. Озоновые дыры. Международное сотрудничество в области охраны окружающей среды от химического загрязнения. «Зелёная химия».

- Видеофрагменты и слайды «Строение Земли и её химический состав».
- Коллекция минералов и горных пород.
- Коллекция «Руды металлов».

- Видеофрагменты и слайды «Глобальные экологические проблемы человечества».
- Видеофрагменты и слайды о степени экологической чистоты товара.

- Изучение гранита.
- Изучение маркировок различных видов промышленных и продовольственных товаров.

Обобщение знаний по химии курса основной школы. Подготовка к Основному государственному экзамену

Строение атома В соответствии c положением химического элемента в периодической системе. Строение вещества: химическая связь и кристаллическая решётка. Зависимость свойств образованных элементами простых веществ (металлов, неметаллов, благородных газов) от положения элементов в периодической системе. неорганических веществ, разделение Типология их на классы Представители.

Признаки и условия протекания химических реакций. Типология химических реакций по различным признакам. Реакции ионного обмена. Окислительновосстановительные реакции.

Химические свойства простых веществ. Характерные химические свойства солеобразующих оксидов, гидроксидов (оснований, кислородсодержащих кислот и амфотерных гидроксидов), солей.

Перечень практических работ

8 класс

- 1. Правила техники безопасности и некоторые виды работ в химической лаборатории (кабинете химии).
- 2. Наблюдение за горящей свечой.
- 3. Анализ почвы.
- 4. Получение, собирание и распознавание кислорода.
- 5. Получение, собирание и распознавание водорода.
- 6. Приготовление раствора с заданной массовой долей растворенного вещества.
- 7. Решение экспериментальных задач по теме «Основные классы неорганических соединений».

9 класс

- 1. Решение экспериментальных задач по теме «Электролитическая диссоциация».
- 2. Изучение свойств соляной кислоты.
- 3. Изучение свойств серной кислоты.
- 4. Получение аммиака и изучение его свойств.
- 5. Получение углекислого газа. Качественная реакция на карбонат-ион.
- 6. Жёсткость воды и способы её устранения.
- 7. Решение экспериментальных задач по теме «Металлы».

Тематическое планирование

8 класс				
Раздел	Кол-во часов	Темы	Кол-во часов	Основные виды деятельности обучающихся (на уровне универсальных учебных действий)
Химия	68	Начальные понятия и законы химии	20	Объяснять, что предметом изучения химии являются вещества, их свойства и превращения Различать тела и вещества, вещества и материалы Устанавливать причинно-следственные связи между свойствами веществ и их применением Характеризовать положительную и отрицательную роль химии в жизни современного общества Аргументировать свою позицию по отношению к хемофилии и хемофобии
		Важнейшие представители неорганических веществ. Количественные отношения в химии	18	
		Основные классы неорганических соединений	10	
		Периодический закон и периодическая система химических элементов Д. И. Менделеева	8	
		Химическая связь. Окислительно- восстановительные реакции	8	
		Повторение	4	
9 класс	TC	T	TC	
Раздел	Кол-во часов	Темы	Кол-во часов	Основные виды деятельности обучающихся (на уровне универсальных учебных действий)
Химия	68	Повторение и обобщение сведений по курсу 8 класса. Химические реакции	5	
		Химические реакции в растворах Неметаллы и их	10	
		соединения	25	
		Металлы и их	16	

соединения			
Химия и окружающая	2		
среда			
Обобщение знаний по	7		
химии за курс			
основной школы.			
Подготовка к			
основному			
государственному			
экзамену (ОГЭ)			

СОГЛАСОВАНО

Протокол заседания методического объединения учителей естественно - научного цикла МБОУ СОШ № 22 им. Героя Советского Союза Г. Г. Шумейко от _____ 20__ года № 1 ____ Э. В. Федоренко подпись руководителя МО

COLHACOBAHO	
Заместитель директора по У	/BP
И.В. О	Сай
20 го	ода